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We outline the elements of linear least squares fitting theory and show how to obtain
errors on fitted parameters. The theory isin fact genera for all cases where the
dependence of the predicted values on fitted parameters can be linearized, i.e. the
likelihood function is Gaussian near the maximum likelihood point.. We illustrate the
main ideas using track fitting as a concrete example.

Notation

Let uP ,i=1,n denote the predicted co-ordinates of the track at wire planei at z co-ordinate
z. The orientation of the wire plane with respect to the x- axis is given by the unit vector
b, which is perpendicular to the z axis. Let the track fitted parameters be denoted by ac
(k=1,p). In three dimensions, the number of parameters to describe a track are the X,y co-
ordinates at a particular value of z, the momentum and the direction of the track at the x,y
point. This makes for atotal of 5 parameters, i.e p=5. If the momentum is not being fit,
then only four parameters are needed. In this case p=4.

The error matrix E of the measured quantities y is defined by

Eij :<(ui - <ui>)(uj - <UJ>)> :<uiuj>' <ui ><Uj> (1)

where the brackets <> are meant to denote the average over many events. If the quantities
i, andj are un-correlated for it j, then Eis adiagona matrix. For tracks, thisis clearly the
case, since the measurements of the various planes are un-correlated. The diagonal
elements of the matrix E are the variances of the quantities u, denoted by s?;

Let us denote by the vector X;, the quantities u-uP. Let the matrix H denote the inverse of
the error matrix E. H is known in the jargon as the Hessian matrix. Then the generalized

c? (valid in the presence of correlations) of afit is given by

i=n j=n
szééHinin (2)
i=1 j=1

Since the predicted values uP are functions of the track fit parameters ac k=1,p, then so is

c?.



Fitting
Fitting is performed by minimizing ¢ with respect to the parameters a k=1,p. We

linearize the problem by assuming that the predicted values uP are linear functions of the

parameters a. Thisis certainly true of straight linefits. i.e

p —
ui _I ika‘k

wherel i« isan by p matrix that is not square in general. Repeated indices imply summing

over (i.ein the above equation, we imply summing over the index k).

Then ¢ can be expressed as

c®=H;(u - u’)(y, - u’) =H,uu, - 2H,uu’ +H,uu’
where we have used the fact that H is a symmetric matrix, i.e Hj=H;.

At the minimum of c?,

2 p p
ﬂi s 2Hij I—J+2Hiju|p—J =
fla, fla, fla,

Linearizing,
2
11]% =-2H,ul , +2H,u? , =0
a,

S0 at minimum,

substituting for yP.

Hijl jkI i = Hijl iU
The above set of equations (there are p of them) can be abbreviated in matrix form by

Mg a =N,

where the square (p by p) matrix My=H;l jkl i and the (1 by p) row vector N =Hjl jku.

This matrix egquation can be inverted yielding the fitted parameters &

A = (M _1)k| N,

3)



Errors of the fitted parameters

Just as the measured quantities y possess an error matrix E and itsinverse H (these aren
by n matrices), the fitted quantities a, also possess an error matrix e and its inverse
denoted by h. These are (p by p) matrices. Let us denote the mlnlmum c? asc?hin and
the fitted parameters as a m m=1,p. We need to ask how the c? changes as we change the
parameters by small increments da,, away from the minimum. As we change the

parameters, the predicted values will change by duP and the c? change can be written
(using equation (3))

p
do? = H, b = H, W 4o g = 111 dads, = M, dada

' Ta, Ta

Just as in measurement space, the minimization of ¢ implies maximizing a Gaussian
likelihood function, with an error matrix given by E, asin equation (1 and 2),

in parameter space, the same likelihood function is expressed by the error matrix e of the
parameters and its inverse Hessian h. Thus, using equation (4),

dc® =h dada, =M, dada

Since thisis true for arbitrary changes of parameters da, this implies h=M, leading to
e=M"

It should be noted that c? is distributed as a G variate with n-p degrees of freedom. To

show thisis straight forward, but beyond the scope of this write-up.

Equations for straight lines in 3 dimensions

The above theory (called linearized least squares fitting) assumes that near the c?
minimum, the c? as a function of the parameters is parabolic. Most problems can be
approximated in this fashion near the minimum to second order. The first order termsin a
Taylor expansion are zero (since it is a minimum) and the second order terms dominate
and the third order terms can be neglected. Thisis how the MINUIT program
(subprogram MIGRAD) works.

We can use the above theory for fitting helices as well as straight lines in the beam
chambers. To do this, all one needs to do is to work out y° as afunction of the straight
line parameters in three dimensions. For the beam chambers, we will work in cylindrica
co-ordinates with the zaxis being the axis of symmetry. Then the equation for a straight
linein3D is



r=c+mz

where T isthe vector denoting a point on the straight line at z co-ordinate z and ¢ isthe
vaueof 1

when z=0. m isthe slope vector whose X,y,z components are given by (tang cosf, tanq
snf, 1).

gistheanglewrt zaxisand f isthe angle of the projection of the straight line in the x-y
plane wrt x-axis.

The wire planes are specified by their z co-ordinate z, i=1,n and their b vectorsb; such
that the predicted co-ordinate uP is given by

U’ =T.b, (5)

The vector b; has components (cosb;, sinb;, 0) where bj is the angle of the wiresw.r.t to
they —axis. An xmeasuring chamber has wires running along the y —axis.
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Figure 1 Chamber geometry with wire directions shown. z axisisout of the paper. Thesign of the
angle b; ispositive counter-clockwise from the y axis.

With these conventions, the parameters of the track (p=4) can be taken to be (m,m,cx
and ¢,). With these conventions, equation 5 reduces to

uip = beix +Cybiy +mxbixzi +mybiyzi



Thereisno implied sum over i in the above equation or the ones below.

The functions | ik can thus be trivially determined by differentiation with the convention
k=1,4 implying in turn (¢, ¢, m, and m).

| ,=b, ;forc,
l,,=b, ;forc,
| ,=b, z ;form,
|, =byz ;form,

We can now proceed with the fit. Thisinvolvesinverting a4 by 4 matrix M. The fitted
parameters are correlated since the wire planes are neither pure x nor y measuring planes.



